

|                                                                    |                  |                                         | engennaria e mei |
|--------------------------------------------------------------------|------------------|-----------------------------------------|------------------|
| Potential Capacity                                                 |                  | 1636                                    |                  |
| Pedestrian Impedance Factor                                        | 1.00             | 1.00                                    |                  |
| Movement Capacity                                                  |                  | 1636                                    |                  |
| Probability of Queue free St.                                      | 1.00             | 1.00                                    |                  |
| Maj L-Shared Prob Q free St.                                       |                  | 1.00                                    |                  |
| Step 3: TH from Minor St.                                          | 8                | 11                                      | -                |
| Conflicting Flows                                                  |                  |                                         | -                |
| Potential Capacity                                                 |                  |                                         |                  |
| Pedestrian Impedance Factor                                        | 1.00             | 1.00                                    |                  |
| Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity        | 1.00             | 1.00                                    |                  |
| Probability of Queue free St.                                      | 1.00             | 1.00                                    |                  |
| Step 4: LT from Minor St.                                          | 7                | 10                                      | -                |
| Conflicting Flows                                                  |                  | 400                                     | -                |
| Potential Capacity                                                 | 1 00             | 598                                     |                  |
| Pedestrian Impedance Factor                                        | 1.00             | 1.00                                    |                  |
| Maj. L, Min T Impedance factor Maj. L, Min T Adj. Imp Factor.      | 1.00             |                                         |                  |
| Cap. Adj. factor due to Impeding mvmnt                             | 1.00             | 1.00                                    |                  |
| Movement Capacity                                                  | 1.00             | 596                                     |                  |
| Worksheet 7-Computation of the Effect of                           | Two-stage Gap Ac | ceptance                                | -                |
|                                                                    | 8                | 11                                      | -                |
| Step 3: TH from Minor St.                                          | 0                | 11                                      | -                |
| Part 1 - First Stage<br>Conflicting Flows                          |                  |                                         |                  |
| Potential Capacity                                                 |                  |                                         |                  |
| Pedestrian Impedance Factor                                        |                  |                                         |                  |
| Cap. Adj. factor due to Impeding mvmnt                             |                  |                                         |                  |
| Movement Capacity<br>Probability of Queue free St.                 |                  |                                         |                  |
| Part 2 - Second Stage                                              |                  |                                         | -                |
| Conflicting Flows                                                  |                  |                                         |                  |
| Potential Capacity                                                 |                  |                                         |                  |
| Pedestrian Impedance Factor                                        |                  |                                         |                  |
| Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity        |                  |                                         |                  |
| Part 3 - Single Stage                                              |                  |                                         | -                |
| Conflicting Flows                                                  |                  |                                         |                  |
| Potential Capacity                                                 | 1 00             | 1 00                                    |                  |
| Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mymnt | 1.00             | 1.00                                    |                  |
| Movement Capacity                                                  | 1.00             | 1.00                                    |                  |
| Result for 2 stage process:                                        |                  |                                         | -                |
| a stage process:                                                   |                  | `                                       |                  |
| y<br>C +                                                           | /                | \                                       |                  |
| C t Probability of Queue free St.                                  | 1.00             | 1.00                                    |                  |
| Step 4: LT from Minor St.                                          | 7                | 10                                      | -                |
|                                                                    |                  |                                         | -\               |
| Part 1 - First Stage<br>Conflicting Flows                          | <i>J</i>         |                                         | \                |
| Potential Capacity                                                 |                  |                                         |                  |
| Pedestrian Impedance Factor                                        | /                |                                         |                  |
| Cap. Adj. factor due to Impeding mvmnt                             |                  |                                         |                  |
| Movement Capacity                                                  |                  | //                                      |                  |
| Part 2 - Second Stage                                              | <del></del>      |                                         | <u> </u>         |
| Conflicting Flows                                                  |                  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \                |
| Potential Capacity                                                 |                  |                                         | 4                |
| Pedestrian Impedance Factor                                        |                  |                                         |                  |
| Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity        |                  |                                         |                  |
| Part 3 - Single Stage                                              |                  |                                         |                  |
| Conflicting Flows                                                  |                  | 400                                     | \                |
| Potential Capacity                                                 |                  | 598                                     | <b>√</b>         |
| Pedestrian Impedance Factor                                        | 1.00             | 1.00                                    |                  |



| Cap. Adj. factor of Movement Capacity                                                 | edance factor.<br>. Imp Factor.<br>due to Impedi |              |          | 1.00<br>1.00<br>1.00 |                                         | 1.00<br>596 | )       |
|---------------------------------------------------------------------------------------|--------------------------------------------------|--------------|----------|----------------------|-----------------------------------------|-------------|---------|
| Results for Two-sta y C t                                                             | tage process:                                    |              |          |                      |                                         | 596         |         |
| Worksheet 8-Shared                                                                    | d Lane Calcul                                    | ations       |          |                      |                                         |             |         |
| Movement                                                                              |                                                  | 7<br>L       | 8<br>T   | 9<br>R               | 10<br>L                                 | 11<br>T     | 12<br>R |
| Volume (vph) Movement Capacity Shared Lane Capac                                      | -                                                |              |          |                      | 180<br>596                              |             |         |
| Worksheet 9-Comput                                                                    | tation of Eff                                    | ect of Flar  | ed Min   | or Stree             | et Appro                                | oaches      |         |
| Movement                                                                              |                                                  | 7<br>L       | 8<br>T   | 9<br>R               | 10<br>L                                 | 11<br>T     | 12<br>R |
| C sep<br>Volume<br>Delay<br>Q sep<br>Q sep +1<br>round (Qsep +1)                      |                                                  |              |          |                      | 596<br>180                              |             |         |
| n max C sh SUM C sep n C act                                                          | y, Queue Leng                                    | rth, and Lev | rel of S | Service              |                                         |             |         |
| Movement<br>Lane Config                                                               | 1 4<br>LT                                        | 7            | 8        | 9                    | 10<br>L                                 | 11          | 12      |
| v (vph) C(m) (vph) v/c 95% queue length Control Delay LOS Approach Delay Approach LOS | 6<br>1636<br>0.00<br>0.01<br>7.2                 |              |          |                      | 180<br>596<br>0.30<br>1.29<br>13.6<br>B | 13.6<br>B   |         |
| Worksheet 11-Share                                                                    | ed Major LT I                                    | impedance ar | nd Delay | ,                    |                                         |             |         |
|                                                                                       |                                                  |              |          | Moveme               | ent 2                                   | Mover       | ment 5  |

## 1.1.4.19 Interseção J – Pico Manhã

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY

Analyst: Progeplan



Agency/Co.:

05/06/2023 Date Performed:

Analysis Time Period: Pico Manha

Intersection:

Jurisdiction: DER/DF

Units: U. S. Metric Analysis Year:

2023 Project ID: FUTURA COMERCIAL East/West Street: M2-M10 North/South Street: M9

Study period (hrs): 1.00 Intersection Orientation: EW

|               | Vehicle  | Volumes | and | Adjustments_ |
|---------------|----------|---------|-----|--------------|
| Major Street: | Approach | Eastbo  | ınd |              |

| ,0112                                  | CIC VO.    | Luilles ai | י כשוג שוי | ab cinc | .11 00     |      |    |  |  |
|----------------------------------------|------------|------------|------------|---------|------------|------|----|--|--|
| Major Street: Approach                 | Εá         | astboun    | d          |         | Westbound  |      |    |  |  |
| Movement                               | 1          | 2          | 3          | - 1     | 4          | 5    | 6  |  |  |
|                                        | L          | T          | R          | - 1     | L          | Т    | R  |  |  |
| Volume                                 |            |            |            |         | 0          | 751  |    |  |  |
| Peak-Hour Factor, PHF                  |            |            |            |         | 0.91       | 0.91 |    |  |  |
| Hourly Flow Rate, HFR                  |            |            |            |         | 0          | 825  |    |  |  |
| Percent Heavy Vehicles                 |            |            |            |         | 17         |      |    |  |  |
| Median Type/Storage<br>RT Channelized? | Undi       | vided      |            |         | /          |      |    |  |  |
| Lanes                                  |            |            |            |         | 0          | 2    |    |  |  |
| Configuration                          |            |            |            | LT T    |            |      |    |  |  |
| Upstream Signal?                       |            | No         |            |         | _          | No   |    |  |  |
| opportant bighar.                      |            | 110        |            |         |            | 110  |    |  |  |
| Minor Street: Approach                 | Northbound |            |            |         | Southbound |      |    |  |  |
| Movement                               | 7          | 8          | 9          |         | 10         | 11   | 12 |  |  |
|                                        | L          | T          | R          |         | L          | T    | R  |  |  |
| Volume                                 | 62         |            |            |         |            |      |    |  |  |
| Peak Hour Factor, PHF                  | 1.00       |            |            |         |            |      |    |  |  |
| Hourly Flow Rate, HFR                  | 62         |            |            |         |            |      |    |  |  |
| Percent Heavy Vehicles                 | 0          |            |            |         |            |      |    |  |  |
| Percent Grade (%)                      |            | 0          |            |         |            | 0    |    |  |  |

Flared Approach: Exists?/Storage Lanes Configuration

Delay, Queue Length, and Level of Service

| Approach         | EB | WB   | No   | rthbound | d | S    | outhbou: | nd |
|------------------|----|------|------|----------|---|------|----------|----|
| Movement         | 1  | 4    | 7    | 8        | 9 | 10   | 11       | 12 |
| Lane Config      |    | LT   | L    |          |   |      |          |    |
| v (vph)          |    | 0    | 62   |          |   | <br> |          |    |
| C(m) (vph)       |    | 1530 | 600  |          |   |      |          |    |
| v/c              |    | 0.00 | 0.10 |          |   |      |          |    |
| 95% queue length |    | 0.00 | 0.35 |          |   |      |          |    |
| Control Delay    |    | 7.4  | 11.7 |          |   |      |          |    |
| LOS              |    | A    | В    |          |   |      |          |    |
| Approach Dolay   |    |      |      | 11 7     |   |      |          |    |

Approach Delay Approach LOS В

HCS+: Unsignalized Intersections Release 5.6

Phone: E-Mail: Fax:

TWO-WAY STOP CONTROL (TWSC) ANALYSIS

Analyst: Progeplan

Agency/Co.: Date Performed: 05/06/2023 Analysis Time Period: Pico Manha Intersection:

DER/DF

Units: U. S. Metric Analysis Year:

Jurisdiction:

2023



Project ID: FUTURA COMERCIAL
East/West Street: M2-M10
North/South Street: M9
Intersection Orientation: EW

Study period (hrs): 1.00

|                        | Vehicle '  | Volumes  | and Adj | ustment | S    |    |           |
|------------------------|------------|----------|---------|---------|------|----|-----------|
| Major Street Movements | _ 1        | 2        | 3       | 4       | 5    | 6  |           |
|                        | L          | Т        | R       | L       | T    | R  |           |
|                        |            |          |         |         |      |    |           |
| Volume                 |            |          |         | 0       | 751  |    |           |
| Peak-Hour Factor, PHF  |            |          |         | 0.91    | 0.91 |    |           |
| Peak-15 Minute Volume  |            |          |         | 0       | 206  |    |           |
| Hourly Flow Rate, HFR  |            |          |         | 0       | 825  |    |           |
| Percent Heavy Vehicles |            |          |         | 17      |      |    |           |
| Median Type/Storage    | Undi       | vided    |         | /       |      |    |           |
| RT Channelized?        |            |          |         |         |      |    |           |
| Lanes                  |            |          |         | 0       | 2    |    |           |
| Configuration          |            |          |         | LT      | Т    |    |           |
| Upstream Signal?       |            | No       |         |         | No   |    |           |
| 11 11 11 11 11         |            |          |         |         |      |    |           |
| Minor Street Movements | 7          | 8        | 9       | 10      | 11   | 12 |           |
|                        | L          | T        | R       | L       | T    | R  |           |
| Volume                 | 62         |          |         |         |      |    |           |
|                        | 1.00       |          |         |         |      |    |           |
| Peak Hour Factor, PHF  |            |          |         |         |      |    |           |
| Peak-15 Minute Volume  | 16         |          |         |         |      |    |           |
| Hourly Flow Rate, HFR  | 62         |          |         |         |      |    |           |
| Percent Heavy Vehicles | 0          | 0        |         |         | ^    |    |           |
| Percent Grade (%)      | 0 /01      | 0        |         | ,       | 0    |    | ,         |
| = =                    | s?/Storage | 9        |         | /       |      |    | /         |
| RT Channelized         |            |          |         |         |      |    |           |
| Lanes                  | 1_         |          |         |         |      |    |           |
| Configuration          | L          |          |         |         |      |    |           |
|                        |            |          |         |         |      |    |           |
| Pe                     | edestrian  | Volumes  | and Ad  | justmen | ts   |    |           |
| Movements              | 13         | 14       | 15      | 16      |      |    |           |
|                        |            |          |         |         |      |    |           |
| Flow (ped/hr)          | 0          | 0        | 0       | 0       |      |    |           |
| Lane Width (m)         | 3.6        | 3.6      | 3.6     | 3.6     |      |    |           |
| Walking Speed (m/sec)  | 1.2        | 1.2      | 1.2     | 1.2     |      |    |           |
| Percent Blockage       | 0          | 0        | 0       | 0       |      |    |           |
|                        |            |          |         |         |      |    |           |
|                        | Ups        | tream Si | gnal Da | ta      |      |    |           |
| Proq.                  |            | Arrival  | Green   |         | Prog |    | Distance  |
| Flow                   | Flow       | Type     | Time    | Lengt   | _    |    | to Signal |
| vph                    | vph        | 11-      | sec     | sec     | kph  |    | meters    |
| CO Toft Muses          |            |          |         |         |      |    |           |
| S2 Left-Turn           |            |          |         |         |      |    |           |
| Through                |            |          |         |         |      |    |           |
| S5 Left-Turn           |            |          |         |         |      |    |           |
| Through                |            |          |         |         |      |    |           |
|                        |            |          |         |         |      |    |           |

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

|                                       | Movement 2 | Movement 5 |
|---------------------------------------|------------|------------|
|                                       |            |            |
| Shared in volume, major th vehicles:  | \ /        | 0          |
| Shared ln volume, major rt vehicles:  | / /        | 0          |
| Sat flow rate, major th vehicles:     |            | 1700       |
| Sat flow rate, major rt vehicles:     |            | 1700       |
| Number of major street through lanes: | \          | 2          |
|                                       |            |            |

Worksheet 4-Critical Gap and Follow-up Time Calculation

| Critical Gap Ca  | alculati | on   |      |      |      |      |      | 77   |
|------------------|----------|------|------|------|------|------|------|------|
| Movement         | 1        | -4   | 7    | 8    | 9    | 10   | 11   | 12   |
|                  | L        | L    | L    | Т    | R    | L    | T    | R    |
| t(c,base)        |          | 4.1  | 7.1  |      |      |      |      |      |
| t(c,hv)<br>P(hv) | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| t(c,g)           |          | 1 /  | 0.20 | 0.20 | 0.10 | 0.20 | 0.20 | 0.10 |
| Percent Grade    |          |      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| t(3,1t)          |          | 0.00 | 0.70 |      |      |      |      |      |



|                                                                                    |                                                         |                                                     |                                     |                     |         |                       |                 |                        |                       | engennaria e mi |
|------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|-------------------------------------|---------------------|---------|-----------------------|-----------------|------------------------|-----------------------|-----------------|
| t(c,T):                                                                            | 1-stage<br>2-stage<br>1-stage                           | 0.00                                                | 0.00<br>0.00<br>4.3                 | 0.00<br>1.00<br>6.4 | 0.00    | 0.00                  | 0.00            | 0.00<br>1.00           | 0.00                  |                 |
|                                                                                    | 2-stage                                                 |                                                     |                                     |                     |         |                       |                 |                        |                       |                 |
| Follow-Up<br>Movement                                                              |                                                         | alculat<br>1                                        | ions<br>4                           | 7                   | 8       | 9                     | 10              | 11                     | 12                    |                 |
|                                                                                    |                                                         | L                                                   | L                                   | L                   | T       | R                     | L               | Т                      | R                     |                 |
| t(f,base)<br>t(f,HV)                                                               | )                                                       | 0.90                                                | 2.20                                | 3.50                | 0.90    | 0.90                  | 0.90            | 0.90                   | 0.90                  | _               |
| P(HV)<br>t(f)                                                                      |                                                         |                                                     | 17<br>2.4                           | 0<br>3.5            |         |                       |                 |                        |                       |                 |
| Worksheet                                                                          | t 5-Effe                                                | ct of t                                             | Jpstrea                             | m Signa             | ıls     |                       |                 |                        |                       | _               |
| Computati                                                                          | ion 1-Qu                                                | eue Cle                                             | arance                              | Time a              | t Upstr | eam Sig<br>Moveme     |                 | Mor                    | vement 5              |                 |
|                                                                                    |                                                         |                                                     |                                     |                     | ∨ (     | t) V(                 | l,prot)         | V(t)                   | V(l,prot)             |                 |
| V prog Total Sat Arrival T Effective Cycle Ler Rp (from Proportic g(q1) g(q2) g(q) | Type<br>e Green,<br>ngth, C<br>Exhibit                  | g (sec<br>(sec)<br>16-11)                           | :)                                  |                     | n P     |                       |                 |                        |                       |                 |
| Computati                                                                          | ion 2-Pr                                                | oportio                                             | n of T                              | WSC Int             | ersecti | on Time               | block           |                        |                       | _               |
|                                                                                    |                                                         |                                                     |                                     |                     | V (     | Moveme<br>t) V(       | nt 2<br>l,prot) |                        | vement 5<br>V(l,prot) |                 |
| Smoothing<br>Proportic<br>Max plate<br>Min plate<br>Duration<br>Proportic          | on of co<br>coned fl<br>coned fl<br>of bloc<br>con time | nflicti<br>ow, V(c<br>ow, V(c<br>ked per<br>blocked | c,max)<br>c,min)<br>ciod, t<br>l, p | (p)                 |         | 0.00                  | 0               | (                      | 0.000                 | _               |
| Computati                                                                          | ion 3-Pl                                                | atoon E                                             | Event Pe                            | eriods              | Res     |                       |                 |                        |                       |                 |
| p(2)<br>p(5)<br>p(dom)<br>p(subo)<br>Constrair                                     | ned or u                                                | nconstr                                             | ained?                              |                     | 0.0     |                       |                 |                        |                       |                 |
| Proportion unblocked for minor movements                                           | d<br>r                                                  |                                                     | (1<br>Single                        | -stage              |         | (2)<br>Two-St<br>ge I | age Proc        | (3)<br>cess<br>tage II | $\rightarrow$         | _               |
| p(1)<br>p(4)<br>p(7)<br>p(8)<br>p(9)<br>p(10)<br>p(11)<br>p(12)                    |                                                         |                                                     |                                     |                     |         |                       |                 |                        | 7                     |                 |
| Computati<br>Single-St<br>Movement                                                 | tage Pro                                                |                                                     | 1                                   | 4                   | 7       | 8                     | 9               | 10                     | 11 12                 |                 |
|                                                                                    |                                                         |                                                     | L                                   | Ĺ                   | L       | T                     | R               | L                      | T R                   |                 |
| V c,x                                                                              |                                                         |                                                     |                                     | 0                   | 412     |                       |                 |                        |                       |                 |
| Px                                                                                 |                                                         |                                                     |                                     |                     |         |                       |                 |                        |                       | 1               |



C r,x C plat,x

| Two-Stage Process                         | 7           |          | 0           | 1            | 0                 | 1               | 1                      |
|-------------------------------------------|-------------|----------|-------------|--------------|-------------------|-----------------|------------------------|
| Stage1                                    | 7<br>Stage2 | Stage1   | 8<br>Stage2 |              | .0<br>Stage2      |                 | 1<br>Stage2            |
| V(c,x)                                    |             |          |             |              |                   |                 |                        |
| S                                         | 3000        |          |             |              |                   |                 |                        |
| P(x)                                      |             |          |             |              |                   |                 |                        |
| V(c,u,x)                                  |             |          |             |              |                   |                 |                        |
| C(r,x)                                    |             |          |             |              |                   |                 |                        |
| C(plat,x)                                 |             |          |             |              |                   |                 |                        |
| Worksheet 6-Impedance                     | e and Cap   | acity Ec | quations    |              |                   |                 |                        |
| Step 1: RT from Minor                     | ~ S+        |          |             | 9            |                   | 12              |                        |
|                                           |             |          |             |              |                   |                 |                        |
| Conflicting Flows<br>Potential Capacity   |             |          |             |              |                   |                 |                        |
| Pedestrian Impedance                      | Factor      |          |             | 1.00         |                   | 1.00            |                        |
| Movement Capacity                         |             |          |             |              |                   |                 |                        |
| Probability of Queue                      | free St.    |          |             | 1.00         |                   | 1.00            |                        |
| Step 2: LT from Major                     | St.         |          |             | 4            |                   | 1               |                        |
| Conflicting Flows                         |             |          |             | 0            |                   |                 |                        |
| Potential Capacity                        |             |          |             | 1530         |                   |                 |                        |
| Pedestrian Impedance                      | Factor      |          |             | 1.00         |                   | 1.00            |                        |
| Novement Capacity Probability of Queue    | free St     |          |             | 1530<br>1.00 |                   | 1.00            |                        |
| Maj L-Shared Prob Q f                     |             |          |             | 1.00         |                   | 1.00            |                        |
| Step 3: TH from Minor                     | St.         |          |             | 8            |                   | 11              |                        |
| Conflicting Flows                         |             |          |             |              |                   |                 |                        |
| otential Capacity                         |             |          |             |              |                   |                 |                        |
| Pedestrian Impedance                      |             |          |             | 1.00         |                   | 1.00            |                        |
| Cap. Adj. factor due Movement Capacity    | to Imped    | ing mvmr | nt          | 1.00         |                   | 1.00            |                        |
| Probability of Queue                      | free St.    |          |             | 1.00         |                   | 1.00            |                        |
| Step 4: LT from Minor                     | St.         |          |             | 7            |                   | 10              |                        |
| Conflicting Flore                         |             |          |             | 412          |                   |                 |                        |
| Conflicting Flows<br>Potential Capacity   |             |          |             | 600          |                   |                 |                        |
| Pedestrian Impedance                      | Factor      |          |             | 1.00         |                   | 1.00            |                        |
| Maj. L, Min T Impedan                     |             |          |             |              |                   | 1.00            |                        |
| Maj. L, Min T Adj. Im                     |             |          |             | 1 00         |                   | 1.00            |                        |
| Cap. Adj. factor due Movement Capacity    | to Imped    | ing mvmr | ıt          | 1.00<br>600  |                   | 1.00            |                        |
|                                           |             |          |             |              |                   |                 |                        |
| Worksheet 7-Computati                     | ion of th   | e Effect | of Two-     | -stage Ga    | p Accept          | cance           |                        |
| Step 3: TH from Minor                     | St.         |          |             | 8            |                   | 11              |                        |
| Part 1 - First Stage                      |             |          |             |              |                   | $\setminus$ $/$ |                        |
| Conflicting Flows                         |             |          |             | 1/           |                   | 1 (             | /                      |
| Potential Capacity                        |             |          |             | ا لا         |                   | 16              |                        |
| edestrian Impedance                       |             |          |             | \            |                   |                 |                        |
| Cap. Adj. factor due Movement Capacity    | to Imped    | ing mvmr | nt _        |              |                   |                 | _                      |
| Probability of Queue                      | free St.    |          |             | 7/           |                   | / > -           |                        |
| art 2 - Second Stage                      |             |          |             |              |                   |                 | $\rightarrow$ $\vdash$ |
| Conflicting Flows                         | -           |          |             |              |                   | ) [             | /                      |
| Potential Capacity                        | _           |          |             |              | $\longrightarrow$ |                 |                        |
| Pedestrian Impedance                      |             |          |             |              |                   | \               | \                      |
| Cap. Adj. factor due<br>Movement Capacity | to Imped    | ing mvmr | nt          |              |                   | \               |                        |
| Part 3 - Single Stage                     |             |          |             |              |                   |                 |                        |
| Conflicting Flows                         |             |          |             |              |                   |                 |                        |
| Potential Capacity                        | Factor      |          |             | 1 00         |                   | 1 00            |                        |
| Pedestrian Impedance                      | ractor      |          |             | 1.00         |                   | 1.00            |                        |
|                                           |             |          |             |              |                   |                 |                        |



| Result for 2 stage process:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Probability of Queue free St. 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Step 4: LT from Minor St. 7 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Part 1 - First Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Conflicting Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Potential Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Pedestrian Impedance Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Cap. Adj. factor due to Impeding mvmnt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Movement Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Part 2 - Second Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Conflicting Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Potential Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Pedestrian Impedance Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Cap. Adj. factor due to Impeding mvmnt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Movement Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Part 3 - Single Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Conflicting Flows 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Potential Capacity 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Pedestrian Impedance Factor 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Maj. L, Min T Impedance factor 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Maj. L, Min T Adj. Imp Factor. 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Cap. Adj. factor due to Impeding mvmnt 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Movement Capacity 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Results for Two-stage process:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| У<br>С t 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Worksheet 8-Shared Lane Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Movement 7 8 9 10 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Movement 7 8 9 10 11 12<br>L T R L T R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Movement 7 8 9 10 11 12<br>L T R L T R  Volume (vph) 62                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Movement 7 8 9 10 11 12<br>L T R L T R  Volume (vph) 62                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches                                                                                                                                                                                                                                                                                                                                      |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12                                                                                                                                                                                                                                                                                                             |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches                                                                                                                                                                                                                                                                                                                                      |  |
| Novement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12 L T R L T R  C sep 600                                                                                                                                                                                                                                                                                      |  |
| Novement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12 L T R L T R  C sep Volume 62 Delay Q sep 1 round (Qsep +1)  n max C sh SUM C sep n                                                                                                                                                                                                                          |  |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12 L T R L T R  C sep Volume 62 Delay Q sep 1 round (Qsep +1)  n max C sh SUM C sep n                                                                                                                                                                                                                          |  |
| Novement   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12 L T R L T R  C sep Volume 62 Delay Q sep 1 round (Qsep +1)  n max C sh SUM C sep n                                                                                                                                                                                                                          |  |
| Movement 7 8 9 10 11 12  L T R L T R  Volume (vph) 62  Movement Capacity (vph) 600  Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12  L T R L T R  C sep 600  Volume 62  Volume 62  Q sep 10  Volume 62  Q sep 11  round (Qsep +1)  n max C sh SUM C sep n C act  Worksheet 10-Delay, Queue Length, and Level of Service                                                                                                                      |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12 L T R L T R  C sep 600 Volume 62 Volume 62 Delay Q sep 1 round (Qsep +1)  n max C sh SUM C sep n C act  Movement 1 4 7 8 9 10 11 12                                                                                                                                                                         |  |
| Movement 7 8 9 10 11 12 L T R L T R  Volume (vph) 62 Movement Capacity (vph) 600 Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12 L T R L T R  C sep 600 Volume 62 Volume 62 Delay Q sep 1 round (Qsep +1)  n max C sh SUM C sep n C act  Movement 1 4 7 8 9 10 11 12                                                                                                                                                                         |  |
| Movement 7 8 9 10 11 12  L T R L T R  Volume (vph) 62  Movement Capacity (vph) 600  Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12  L T R L T R  C sep  Volume 62  Delay Q sep Q Q sep +1  round (Qsep +1)  n max C sh SUM C sep n C act  Movement 1 4 7 8 9 10 11 12  Lane Config LT L  v (vph) 0 62                                                                                                                                       |  |
| Movement 7 8 9 10 11 12  L T R L T R  Volume (vph) 62  Movement Capacity (vph) 600  Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12  L T R L T R  C sep 600  Volume 62  Delay Q sep 4  Volume 62  Delay Q sep +1 round (Qsep +1)  n max C sh  SUM C sep n C act  Worksheet 10-Delay, Queue Length, and Level of Service  Movement 1 4 7 8 9 10 11 12  L T R  Movement 1 4 7 8 9 10 11 12  V (vph) 0 62  C(m) (vph) 0 62  C(m) (vph) 1530 600 |  |
| Movement 7 8 9 10 11 12  L T R L T R  Volume (vph) 62  Movement Capacity (vph) 600  Shared Lane Capacity (vph)  Worksheet 9-Computation of Effect of Flared Minor Street Approaches  Movement 7 8 9 10 11 12  L T R L T R  C sep  Volume 62  Delay Q sep Q sep +1  round (Qsep +1)  n max C sh SUM C sep n C act  Movement 1 4 7 8 9 10 11 12  Lane Config LT L  v (vph) 0 62                                                                                                                                         |  |



11.7 Control Delay 7.4 LOS Α В

Approach Delay 11.7 Approach LOS В

Worksheet 11-Shared Major LT Impedance and Delay

|                                                                           | Movement 2 | Movement 5 |
|---------------------------------------------------------------------------|------------|------------|
| p(oj)                                                                     | 1.00       | 1.00       |
| v(il), Volume for stream 2 or 5                                           |            | 0          |
| v(i2), Volume for stream 3 or 6                                           |            | 0          |
| s(il), Saturation flow rate for stream 2 or 5                             |            | 1700       |
| s(i2), Saturation flow rate for stream 3 or 6                             |            | 1700       |
| P*(oj)                                                                    |            | 1.00       |
| d(M,LT), Delay for stream 1 or 4                                          |            | 7.4        |
| N, Number of major street through lanes d(rank,1) Delay for stream 2 or 5 |            | 2          |

## Interseção J – Pico Tarde

HCS+: Unsignalized Intersections Release 5.6

\_\_TWO-WAY STOP CONTROL SUMMARY\_

Analyst: Progeplan Agency/Co.:
Date Performed: 05/06/2023 Analysis Time Period: Pico Tarde Intersection: J Jurisdiction: DER/DF

Units: U. S. Metric

Analysis Year:

v (vph)

C(m) (vph)

Project ID: FUTURA COMERCIAL East/West Street: M2-M10 North/South Street:

| Intersection C       | rientation: | EW        |          | S      | tudy pe | riod (hrs | ): 1.00          |
|----------------------|-------------|-----------|----------|--------|---------|-----------|------------------|
|                      | Veh         | icle Vo   | lumes an | d Adiu | stments |           |                  |
| Major Street:        |             |           | astbound |        |         | Westboun  | d                |
| -                    | Movement    | 1         | 2        | 3      | 4       | 5         | 6                |
|                      |             | L         | T        | R      | L       | T         | R                |
| Volume               |             |           |          |        | 10      | 2138      |                  |
| Peak-Hour Fact       | or, PHF     |           |          |        | 0.      | 91 0.91   |                  |
| Hourly Flow Ra       | te, HFR     |           |          |        | 10      | 2349      |                  |
| Percent Heavy        | Vehicles    |           |          |        | 6       |           |                  |
| Median Type/St       | orage       | Undi      | vided    |        | /       |           |                  |
| RT Channelized       | 1?          |           |          |        |         |           |                  |
| Lanes                |             |           |          |        |         | 0 2       |                  |
| Configuration        |             |           |          |        |         | LTT       |                  |
| Upstream Signa       | 1?          |           | No       |        |         | No        |                  |
|                      |             |           |          |        |         |           |                  |
| Minor Street:        |             |           | orthboun |        |         | Southbou  |                  |
|                      | Movement    | 7         | 8        | 9      | 10      |           | 12               |
|                      |             | L         | T        | R      | L       | Т         | R/               |
| Volume               |             | 6         |          |        |         |           | <del></del>      |
| Peak Hour Fact       | or, PHF     | 0.91      |          |        |         |           |                  |
| Hourly Flow Ra       | te, HFR     | 6         |          |        | \       |           |                  |
| Percent Heavy        | Vehicles    | 0         |          |        |         |           |                  |
| Percent Grade        | (%)         |           | 0        |        | 1 /     | 0         | <b>\( \)</b>     |
| Flared Approac       | h: Exists?  | /Storage  | Э        |        | 1       |           | 1 ~/ [           |
| Lanes                |             | 1         |          |        |         |           | 1 /> -           |
| Configuration        |             |           | Ĺ        |        |         |           | ١١               |
|                      |             |           |          | 1 -    | 1 5 ~   |           | 1                |
| 7                    |             |           | ength, a |        |         |           | h. la la         |
| Approach<br>Movement | EB          | WB<br>4 I |          | thboun | .a<br>9 | I 10      | thbound<br>11 12 |
|                      | 1           | - '       | 7        | 8      | 9       | 1 10      | 11 12            |
| Lane Config          |             | LT        | L        |        |         |           |                  |

10

1597

0.01

207



0.09 95% queue length 0.02 7.3 Control Delay LOS Α С

22.9 Approach Delay Approach LOS С

HCS+: Unsignalized Intersections Release 5.6

Phone: Fax: E-Mail:

TWO-WAY STOP CONTROL (TWSC) ANALYSIS

Analyst: Progeplan Agency/Co.: Date Performed: 05/06/2023 Analysis Time Period: Pico Tarde Intersection: Jurisdiction: DER/DF Units: U. S. Metric

Analysis Year: 2023
Project ID: FUTURA COMERCIAL
East/West Street: M2-M10 North/South Street: M9
Intersection Orientation: EW

Study period (hrs): 1.00

|                                     | Vehicle | Volumes | and A | djustmen | ts   |    |  |
|-------------------------------------|---------|---------|-------|----------|------|----|--|
| Major Street Movements              | _ 1     | 2       | 3     | 4        | 5    | 6  |  |
|                                     | L       | T       | R     | L        | Т    | R  |  |
| Volume                              |         |         |       | 10       | 2138 |    |  |
| Peak-Hour Factor, PHF               |         |         |       | 0.91     | 0.91 |    |  |
| Peak-15 Minute Volume               |         |         |       | 3        | 587  |    |  |
| Hourly Flow Rate, HFR               |         |         |       | 10       | 2349 |    |  |
| Percent Heavy Vehicles              |         |         |       | 6        |      |    |  |
| Median Type/Storage RT Channelized? | Und     | ivided  |       | /        |      |    |  |
| Lanes                               |         |         |       | 0        | 2    |    |  |
| Configuration                       |         |         |       | L        | ТТ   |    |  |
| Upstream Signal?                    |         | No      |       |          | No   |    |  |
| Minor Street Movements              | 7       | 8       | 9     | 10       | 11   | 12 |  |
|                                     | L       | T       | R     | L        | T    | R  |  |

| V | olume             |           | 6       |   |
|---|-------------------|-----------|---------|---|
| Ρ | eak Hour Factor,  | PHF       | 0.91    |   |
| Ρ | eak-15 Minute Vol | Lume      | 2       |   |
| Н | ourly Flow Rate,  | HFR       | 6       |   |
| P | ercent Heavy Vehi | icles     | 0       |   |
| Ρ | ercent Grade (%)  |           |         | 0 |
| F | lared Approach:   | Exists?/S | Storage |   |
| R | T Channelized     |           |         |   |
| _ |                   |           | _       |   |

Lanes Configuration

| Movements                                                           | _Pedestrian<br>13 | Volumes<br>14        | and Adj<br>15        | ustments16           |  |
|---------------------------------------------------------------------|-------------------|----------------------|----------------------|----------------------|--|
| Flow (ped/hr) Lane Width (m) Walking Speed (m/sec) Percent Blockage | 0<br>3.6<br>1.2   | 0<br>3.6<br>1.2<br>0 | 0<br>3.6<br>1.2<br>0 | 0<br>3.6<br>1.2<br>0 |  |

|       | Up   | stream Si | gnal Dat | a      |       | 7 /       |
|-------|------|-----------|----------|--------|-------|-----------|
| Prog. | Sat  | Arrival   | Green    | Cycle  | Prog. | Distance  |
| Flow  | Flow | Type      | Time     | Length | Speed | to Signal |
| vph   | vph  |           | sec      | sec    | kph   | meters    |



S2 Left-Turn Through S5 Left-Turn Through

Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles

|                |           |          |         | I       | Movement | 2     | Movemen | nt 5 |
|----------------|-----------|----------|---------|---------|----------|-------|---------|------|
| Shared ln volu | ıme, majo | r th vel | hicles: |         |          |       | 0       |      |
| Shared ln volu | ıme, majo | r rt vel | hicles: |         |          |       | 0       |      |
| Sat flow rate, | major t   | h vehic  | les:    |         |          |       | 1700    |      |
| Sat flow rate, | major r   | t vehic  | les:    |         |          |       | 1700    |      |
| Number of majo | or street | through  | h lanes | :       |          |       | 2       |      |
| Worksheet 4-Ci | ritical G | ap and   | Follow- | up Time | Calcula  | ation |         |      |
| Critical Gap ( | Calculati | on       |         |         |          |       |         |      |
| Movement       | 1         | 4        | 7       | 8       | 9        | 10    | 11      | 12   |
|                | L         | L        | L       | Т       | R        | L     | Т       | R    |
| t(c,base)      |           | 4.1      | 7.1     |         |          |       |         |      |
| t(c,hv)        | 1.00      | 1.00     | 1.00    | 1.00    | 1.00     | 1.00  | 1.00    | 1.00 |
| P(hv)          |           | 6        | 0       |         |          |       |         |      |
| t(c,g)         |           |          | 0.20    | 0.20    | 0.10     | 0.20  | 0.20    | 0.10 |
| Percent Grade  |           |          | 0.00    | 0.00    | 0.00     | 0.00  | 0.00    | 0.00 |
| t(3,1t)        |           | 0.00     | 0.70    |         |          |       |         |      |
| t(c,T): 1-sta  | ge 0.00   | 0.00     | 0.00    | 0.00    | 0.00     | 0.00  | 0.00    | 0.00 |
| 2-sta          | ge 0.00   | 0.00     | 1.00    | 1.00    | 0.00     | 1.00  | 1.00    | 0.00 |
| t(c) 1-sta     | ige       | 4.2      | 6.4     |         |          |       |         |      |
| 2-sta          | ıge       |          |         |         |          |       |         |      |
| Follow-Up Time |           |          |         |         |          |       |         |      |
| Movement       | 1         | 4        | 7       | 8       | 9        | 10    | 11      | 12   |
|                | L         | L        | L       | Т       | R        | L     | Т       | R    |
| t(f,base)      |           | 2.20     | 3.50    |         |          |       |         |      |
| t(f,HV)        | 0.90      | 0.90     | 0.90    | 0.90    | 0.90     | 0.90  | 0.90    | 0.90 |
| - ()           |           | 6        | 0       |         |          |       |         |      |
| P(HV)          |           | 2.3      | 3.5     |         |          |       |         |      |

Worksheet 5-Effect of Upstream Signals

Computation 1-Queue Clearance Time at Upstream Signal Movement 2 Movement 5 V(t) V(l,prot) V(t)V(l,prot)

V prog

Total Saturation Flow Rate, s (vph)

Arrival Type

Effective Green, g (sec) Cycle Length, C (sec) Rp (from Exhibit 16-11)

Proportion vehicles arriving on green P

g(q1) g(q2)

g (q)

Computation 2-Proportion of TWSC Intersection Time blocked

Movement 5 Movement 2

V(t) V(l,prot) V(t) V(l,prot)

alpha beta

Travel time, t(a) (sec)

Smoothing Factor, F

Proportion of conflicting flow, f

Max platooned flow, V(c,max) Min platooned flow, V(c,min)

Duration of blocked period, t(p)

Proportion time blocked, p

0.000

0.000

Computation 3-Platoon Event Periods Result

0.000 p(2)



p(5) 0.000 p(dom) p(subo) Constrained or unconstrained? Proportion unblocked (1) (2) (3) for minor Single-stage Two-Stage Process movements, p(x)Process Stage I Stage II p(1) p(4) p(7) p(8) p(9) p(10) p(11) p(12) Computation 4 and 5 Single-Stage Process 10 12 11 L L L Т R V c,x 1194 S Рx V c,u,x Cr,x C plat,x Two-Stage Process 10 Stage1 Stage2 Stage1 Stage2 Stage1 Stage2 Stage1 Stage2 V(c,x) 3000 P(x) V(c,u,x)C(r,x) C(plat,x)Worksheet 6-Impedance and Capacity Equations Step 1: RT from Minor St. 9 12 Conflicting Flows Potential Capacity Pedestrian Impedance Factor 1.00 1.00 Movement Capacity Probability of Queue free St. 1.00 1.00 Step 2: LT from Major St. 4 1 Conflicting Flows Potential Capacity 1597 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 1597 Probability of Queue free St. 0.99 1.00 Maj L-Shared Prob Q free St. 0.99 11 Step 3: TH from Minor St. 8 Conflicting Flows Potential Capacity 1.00 1.00 Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Movement Capacity Probability of Queue free St. 1.00 1.00 Step 4: LT from Minor St. 10 Conflicting Flows 1194 208 Potential Capacity 1.00 Pedestrian Impedance Factor 1.00



| Maj. L, Min T Impedance factor Maj. L, Min T Adj. Imp Factor. Cap. Adj. factor due to Impeding mvmnt Movement Capacity                                                                                                                                                                          | 0.99                               | 0.99<br>1.00<br>1.00         | _   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------|-----|
| Worksheet 7-Computation of the Effect of Tw                                                                                                                                                                                                                                                     | vo-stage Gap F                     | Acceptance                   |     |
| Step 3: TH from Minor St.                                                                                                                                                                                                                                                                       | 8                                  | 11                           | _   |
| Part 1 - First Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt Movement Capacity Probability of Queue free St.                                                                                                                    |                                    |                              | _   |
| Part 2 - Second Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt Movement Capacity                                                                                                                                                 |                                    |                              | _   |
| Part 3 - Single Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mymnt Movement Capacity                                                                                                                                                 | 1.00                               | 1.00                         | -   |
| Result for 2 stage process: a y                                                                                                                                                                                                                                                                 |                                    |                              | -   |
| C t<br>Probability of Queue free St.                                                                                                                                                                                                                                                            | 1.00                               | 1.00                         |     |
| Step 4: LT from Minor St.                                                                                                                                                                                                                                                                       | 7                                  | 10                           | -   |
| Part 1 - First Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt Movement Capacity  Part 2 - Second Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt Movement Capacity |                                    |                              | -   |
| Part 3 - Single Stage Conflicting Flows Potential Capacity Pedestrian Impedance Factor Maj. L, Min T Impedance factor Maj. L, Min T Adj. Imp Factor. Cap. Adj. factor due to Impeding mvmnt Movement Capacity                                                                                   | 1194<br>208<br>1.00<br>0.99<br>207 | 1.00<br>0.99<br>1.00<br>1.00 |     |
| Results for Two-stage process:                                                                                                                                                                                                                                                                  |                                    |                              |     |
| a<br>Y<br>C t                                                                                                                                                                                                                                                                                   | 207                                | TAF                          |     |
| Worksheet 8-Shared Lane Calculations                                                                                                                                                                                                                                                            |                                    | $\rightarrow$                | ++- |
| Movement 7<br>L                                                                                                                                                                                                                                                                                 | 8 9<br>T R                         | 10 11 12<br>L T R            |     |
| Volume (vph) 6 Movement Capacity (vph) 207 Shared Lane Capacity (vph)                                                                                                                                                                                                                           |                                    |                              |     |



Worksheet 9-Computation of Effect of Flared Minor Street Approaches

| Movement                                                                                      |         |                                              | 7                                          | 8       | 9      | 10      | 11            | 12 |
|-----------------------------------------------------------------------------------------------|---------|----------------------------------------------|--------------------------------------------|---------|--------|---------|---------------|----|
|                                                                                               |         |                                              | L                                          | Т       | R      | L       | Т             | R  |
| C sep                                                                                         |         |                                              | 20                                         | 7       |        |         |               |    |
| Volume                                                                                        |         |                                              | 6                                          |         |        |         |               |    |
| Delay                                                                                         |         |                                              |                                            |         |        |         |               |    |
| Q sep                                                                                         |         |                                              |                                            |         |        |         |               |    |
| Q sep +1                                                                                      |         |                                              |                                            |         |        |         |               |    |
| round (Qsep +1)                                                                               |         |                                              |                                            |         |        |         |               |    |
| n max                                                                                         |         |                                              |                                            |         |        |         | <del></del> - |    |
| C sh                                                                                          |         |                                              |                                            |         |        |         |               |    |
| SUM C sep                                                                                     |         |                                              |                                            |         |        |         |               |    |
| n                                                                                             |         |                                              |                                            |         |        |         |               |    |
|                                                                                               |         |                                              |                                            |         |        |         |               |    |
| C act<br>                                                                                     |         |                                              |                                            |         |        |         |               |    |
| C act  Worksheet 10-Delay  Movement Lane Config                                               | , Queue | e Length,                                    | , and Le                                   | evel of | Servic | e<br>10 | 11            | 12 |
| Worksheet 10-Delay                                                                            |         | 4                                            | 7                                          |         |        |         | 11            | 12 |
| Worksheet 10-Delay<br>Movement<br>Lane Config                                                 |         | 4<br>LT                                      | 7<br>L                                     |         |        |         | 11            | 12 |
| Worksheet 10-Delay Movement Lane Config v (vph)                                               |         | 4<br>LT                                      | 7<br>L                                     |         |        |         | 11            | 12 |
| Movement Lane Config  v (vph) C(m) (vph)                                                      |         | 4<br>LT<br>10<br>1597                        | 7<br>L<br>6<br>207                         |         |        |         | 11            | 12 |
| Movement Lane Config  v (vph) C(m) (vph) v/c                                                  |         | 4<br>LT<br>10<br>1597<br>0.01                | 7<br>L<br>6<br>207<br>0.03                 |         |        |         | 11            | 12 |
| Movement Lane Config  v (vph) C(m) (vph) v/c 95% queue length                                 |         | 10<br>1597<br>0.01<br>0.02                   | 7<br>L<br>6<br>207<br>0.03<br>0.09         |         |        |         | 11            | 12 |
| Worksheet 10-Delay Movement Lane Config v (vph) C(m) (vph) v/c 95% queue length Control Delay |         | 4<br>LT<br>10<br>1597<br>0.01<br>0.02<br>7.3 | 7<br>L<br>6<br>207<br>0.03<br>0.09<br>22.9 |         |        |         | 11            | 12 |

Worksheet 11-Shared Major LT Impedance and Delay

|                                                                           | Movement 2 | Movement 5 |
|---------------------------------------------------------------------------|------------|------------|
| p(oj)                                                                     | 1.00       | 0.99       |
| v(il), Volume for stream 2 or 5                                           |            | 0          |
| v(i2), Volume for stream 3 or 6                                           |            | 0          |
| s(il), Saturation flow rate for stream 2 or 5                             |            | 1700       |
| s(i2), Saturation flow rate for stream 3 or 6                             |            | 1700       |
| P*(oj)                                                                    |            | 0.99       |
| d(M,LT), Delay for stream 1 or 4                                          |            | 7.3        |
| N, Number of major street through lanes d(rank,1) Delay for stream 2 or 5 |            | 2          |

## 1.1.4.20 Interseção J – Pico Tarde

HCS+: Unsignalized Intersections Release 5.6 TWO-WAY STOP CONTROL SUMMARY Analyst: Progeplan Agency/Co.: 05/06/2023 Date Performed: Analysis Time Period: Pico Tarde Intersection: Jurisdiction: DER/DF Units: U. S. Metric Analysis Year: 2023 Project ID: FUTURA COMERCIAL East/West Street: M2-M10 North/South Street: М9 Intersection Orientation: EW Study period (hrs): Vehicle Volumes and Adjustments Major Street: Approach Eastbound Westbound Movement 4 R | L Т R Volume 10 2138 Peak-Hour Factor, PHF 0.91 0.91 Hourly Flow Rate, HFR 10



Percent Heavy Vehicles 6 Median Type/Storage Undivided RT Channelized? 2 Lanes Ω LT T Configuration Upstream Signal? No No Minor Street: Approach Northbound Southbound 9 10 Movement 8 11 12 L Т R  $\mathbb{L}$ Т R Volume Peak Hour Factor, PHF 0.91 Hourly Flow Rate, HFR 6 Percent Heavy Vehicles 0 Percent Grade (%) 0 Flared Approach: Exists?/Storage Lanes Configuration Delay, Queue Length, and Level of Service Southbound Approach EB WB Northbound Movement 4 8 9 10 LT L Lane Config v (vph) 10 C(m) (vph) 1597 207 0.01 0.03 v/c 95% queue length 0.09 0.02 22.9 Control Delay 7.3 LOS C Α 22.9 Approach Delay Approach LOS С

HCS+: Unsignalized Intersections Release 5.6

Phone: E-Mail: Fax:

TWO-WAY STOP CONTROL(TWSC) ANALYSIS\_ Analyst: Progeplan Agency/Co.: Date Performed: 05/06/2023 Analysis Time Period: Pico Tarde Intersection: Jurisdiction: DER/DF Units: U. S. Metric Analysis Year: Project ID: FUTURA COMERCIAL East/West Street: M2-M10 North/South Street: М9 Intersection Orientation: EW Study period (hrs): 1.00 Vehicle Volumes and Adjustments Major Street Movements 1 2 3 6 Т R L L Т R Volume 10 2138 Peak-Hour Factor, PHF 0.91 0.91 Peak-15 Minute Volume 587 3 Hourly Flow Rate, HFR 10 2349 Percent Heavy Vehicles Median Type/Storage 6 Undivided RT Channelized? 0 2 Lanes Configuration LT т Upstream Signal? No No



| Peak Hour Factor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                   |                                |                                     |        |              |              |              |              |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|-------------------------------------|--------|--------------|--------------|--------------|--------------|---|
| Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minor Street Movemen                                                                                                  | nts                                                               |                                |                                     |        |              |              |              |              |   |
| Peak Hour Factor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                   | L                              | T                                   | R      | L            | Ι            | ' R          |              |   |
| Peak-15 Minute Volume 2 Hourly Flow Rate, HFR 6 Percent Heavy Vehicles 0 Percent Grade (%) 0 0 0 Flared Approach: Exists?/Storage / / / / / RT Channelized Lanes 1 Configuration L  Pedestrian Volumes and Adjustments 13 14 15 16  Flow (ped/hr) 0 0 0 0 0 Lane Width (n) 3.6 3.6 3.6 3.6 3.6 Walking Speed (m/sec) 1.2 1.2 1.2 1.2 Percent Blockage 0 0 0 0 0  Upstream Signal Data Prog. Sat Arrival Green Cycle Prog. Distance Plow Type Time Length Speed to Signal Wyh vph Type Time Length Speed to Signal Meters  S2 Laft-Turn Through Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles Shared In volume, major th vehicles: 0 0 Sat flow rate, major th vehicles: 1700 Sat flow rate, major rate through lanes: 1700 Sat flow rate, major rate vehicles: 1700 Sat flow rat | Volume                                                                                                                |                                                                   | 6                              |                                     |        |              |              |              |              |   |
| Hourly Flow Rate, HFR 6 Percent Heavy Vehicles 0 Percent Grade (%) 0 0 0 Percent Grade (%) 0 0 0 0 Percent Grade (%) 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak Hour Factor, Pl                                                                                                  | HF                                                                | 0.91                           |                                     |        |              |              |              |              |   |
| Percent Heavy Vehicles 0 Plared Approach: Exists/Storage / / RT Channelized Lanes 1 Configuration L  Pedestrian Volumes and Adjustments Movements 13 14 15 16 Flow (ped/hr) 0 0 0 0 0 Lane Width (m) 3.6 3.6 3.6 3.6 3.6 Walking Speed (m/sec) 1.2 1.2 1.2 1.2 1.2 Percent Blockage 0 0 0 0 0  Upstream Signal Data Prog. Sat Arrival Green Cycle Prog. Distance Flow Flow Type Time Length Speed to Signal vph vph vph vph sec sec kph meters  \$2 Left-Turn Through  Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles  \$35 Left-Turn Through  Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles  \$4 Line Movement 2 Movement 5  Shared In volume, major th vehicles: 0 Sat flow rate, major th vehicles: 1700 Sat flow rate, major tr twhicles: 1700 Solution Movement 1 4 7 8 9 10 11 12  L L L T R L T R  t(c,base) 4.1 7.1 t(c,base) 4.1 7.1 t(c,base) 4.1 7.1 t(c,base) 6 0 0.20 0.20 0.10 0.20 0.20 0.10 Percent Grade 0.00 0.00 0.00 0.00 0.00 0.00 0.00  **Total Gap Calculation Movement 1 4 7 8 9 10 11 12 **Total Gap Calculation Movement 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       |                                                                   |                                |                                     |        |              |              |              |              |   |
| Percent Grade (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                     |                                                                   |                                |                                     |        |              |              |              |              |   |
| Pedestrian Volumes and Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       | les                                                               | 0                              | 0                                   |        |              | 0            |              |              |   |
| Pedestrian Volumes and Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       | vi a+ a2 / c                                                      | +02200                         | U                                   |        | ,            | U            |              | ,            |   |
| Pedestrian Volumes and Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       | XISUS:/S                                                          | corage                         |                                     |        | /            |              |              | /            |   |
| Pedestrian Volumes and Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |                                                                   | 1                              |                                     |        |              |              |              |              |   |
| The property of the property   | Configuration                                                                                                         |                                                                   |                                |                                     |        |              |              |              |              |   |
| The property of the property   |                                                                                                                       | Padas                                                             | trian 1                        | Volumes                             | and    | Adiust       | mants        |              |              |   |
| Lane Width (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Movements                                                                                                             |                                                                   |                                |                                     |        |              |              |              |              |   |
| Upstream Signal Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flow (ped/hr)                                                                                                         |                                                                   | 0                              | 0                                   | 0      |              | )            |              |              |   |
| Description      | Lane Width (m)                                                                                                        |                                                                   |                                |                                     |        |              |              |              |              |   |
| Upstream Signal Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                       | c)                                                                |                                |                                     |        |              |              |              |              |   |
| Prog. Sat Arrival Green   Cycle Prog. Distance Flow roph   Flow Type   Time   Length   Speed   to Signal with respect to the program of the   | Percent Blockage                                                                                                      |                                                                   | 0                              | 0                                   | 0      | (            | )            |              |              |   |
| Prog. Sat Arrival Green   Cycle Prog. Distance Flow roph   Flow Type   Time   Length   Speed   to Signal with respect to the program of the   |                                                                                                                       |                                                                   | Upst                           | ream Si                             | gnal   | Data         |              |              |              |   |
| vph         vph         sec         kph         meters           S2 Left-Turn Through           Movement 2         Movement 5           Movement 2         Movement 5           Shared In volume, major th vehicles:         0           Shared In volume, major th vehicles:         0                Sat flow rate, major th vehicles:             1700                Sat flow rate, major th vehicles:             1700                Sat flow rate, major th vehicles:             1700                     Sat flow rate, major th vehicles:              1700                     Sat flow rate, major th vehicles:             1700                     Sat flow rate, major th vehicles:             1700                           Sat flow rate, major th vehicles:                   1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pro                                                                                                                   | og. S                                                             |                                |                                     | -      | _            | ycle         | Prog.        | Distanc      | e |
| S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flo                                                                                                                   | ow F                                                              | low '                          | Type                                | Tin    | ne Le        | ength        | Speed        | _            |   |
| Through  S5 Left-Turn Through  Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles    Movement 2   Movement 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vpl                                                                                                                   | h v                                                               | ph                             |                                     | sec    | : 5          | sec          | kph          | meters       |   |
| ## Through    Worksheet 3-Data for Computing Effect of Delay to Major Street Vehicles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                   |                                |                                     |        |              |              |              |              |   |
| Movement 2   Movement 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |                                                                   |                                |                                     |        |              |              |              |              |   |
| Movement 2   Movement 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Workshoot 2-Data for                                                                                                  | r Comput                                                          | ing Ef                         | foot of                             | Do 1 - |              | Major C      | '+ xoo+ 17   | ohialoa      |   |
| Shared In volume, major th vehicles:  Shared In volume, major rt vehicles:  Sat flow rate, major rt vehicles:  Sat flow rate, major rt vehicles:  Sat flow rate, major rt vehicles:  Number of major street through lanes:  Worksheet 4-Critical Gap and Follow-up Time Calculation  Critical Gap Calculation  Movement  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       |                                                                   |                                | Tect or                             |        |              |              |              |              |   |
| Shared In volume, major rt vehicles:  Sat flow rate, major th vehicles:  Sat flow rate, major rt vehicles:  Number of major street through lanes:  Worksheet 4-Critical Gap and Follow-up Time Calculation  Critical Gap Calculation  Movement  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |                                                                   |                                |                                     | MC     | vemen        | Ε Ζ          | Moveme       | nt 5         |   |
| Sat flow rate, major th vehicles: 1700 Sat flow rate, major rt vehicles: 1700 Number of major street through lanes: 2  Worksheet 4-Critical Gap and Follow-up Time Calculation  Critical Gap Calculation Movement 1 4 7 8 9 10 11 12 L L T R L T R  t(c,base) 4.1 7.1 t(c,hv) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shared In volume, ma                                                                                                  | ajor th                                                           | vehicle                        | es:                                 |        |              |              | 0            |              |   |
| Sat flow rate, major rt vehicles: 1700 Number of major street through lanes: 2  Worksheet 4-Critical Gap and Follow-up Time Calculation  Critical Gap Calculation Movement 1 4 7 8 9 10 11 12 L L L T R L T R  t(c,base) 4.1 7.1 t(c,hv) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shared in volume, ma                                                                                                  | ajor rt '                                                         | vehicle                        | es:                                 |        |              |              | 0            |              |   |
| Number of major street through lanes:       2         Worksheet 4-Critical Gap and Follow-up Time Calculation         Critical Gap Calculation         Movement       1       4       7       8       9       10       11       12         L       L       L       T       R       L       T       R         t(c,base)       4.1       7.1       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                   |                                |                                     |        |              |              |              |              |   |
| Worksheet 4-Critical Gap and Follow-up Time Calculation  Critical Gap Calculation  Movement 1 4 7 8 9 10 11 12  L L L T R L T R  t(c,base) 4.1 7.1  t(c,hv) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                     |                                                                   |                                |                                     |        |              |              |              |              |   |
| Critical Gap Calculation  Movement 1 4 7 8 9 10 11 12  L L L T R L T R   t(c,base) 4.1 7.1  t(c,hv) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of major stre                                                                                                  | eet thro                                                          | ugh la                         | nes:                                |        |              |              | 2            |              |   |
| Movement 1 4 7 8 9 10 11 12  L L L T R   t(c,base) 4.1 7.1  t(c,hv) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Worksheet 4-Critical                                                                                                  | l Gap and                                                         | d Foll                         | ow-up T                             | ime (  | Calcula      | ation        |              |              |   |
| Movement 1 4 7 8 9 10 11 12  L L L T R   t(c,base) 4.1 7.1  t(c,hv) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Critical Can Calant                                                                                                   | ation                                                             |                                |                                     |        |              |              |              |              |   |
| L L L T R L T R  t(c,base)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                     |                                                                   | 7                              | Ω                                   |        | 9            | 1 ()         | 11           | 12           |   |
| t(c,base)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       |                                                                   |                                |                                     |        |              |              |              |              |   |
| t(c,hv) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ш                                                                                                                     |                                                                   | -                              | _                                   |        |              | -            | _            |              |   |
| t(c,hv) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t(c,base)                                                                                                             | 4.1                                                               | 7.                             | 1                                   |        |              |              |              |              |   |
| t(c,g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                       |                                                                   |                                |                                     | 00     | 1.00         | 1.00         | 1.00         | 1.00         |   |
| Percent Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P(hv)                                                                                                                 | 6                                                                 |                                |                                     |        |              |              | \            |              |   |
| t(3,1t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t(c,g)                                                                                                                |                                                                   | 0.3                            | 20 0.                               | 20     |              |              |              |              |   |
| t(c,T): 1-stage 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Percent Grade                                                                                                         |                                                                   |                                |                                     |        |              |              |              |              |   |
| 2-stage 0.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 t(c) 1-stage 4.2 6.4 2-stage  Follow-Up Time Calculations Movement 1 4 7 8 9 10 11 12 L L T R L T R  t(f,base) 2.20 3.50 t(f,HV) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       |                                                                   |                                |                                     | 00 /   | 0.00         | 0.00         | 0.00         | 0.00         |   |
| t(c) 1-stage 2-stage 4.2 6.4  Follow-Up Time Calculations Movement 1 4 7 8 9 10 11 12 L L T R L T R  t(f,base) 2.20 3.50 t(f,HV) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 P(HV) 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t(3,1t)                                                                                                               |                                                                   | 0 0.                           | 70                                  | (      |              |              | _ ~          |              |   |
| 2-stage  Follow-Up Time Calculations Movement 1 4 7 8 9 10 11 12 L L T R L T R  t(f,base) 2.20 3.50 t(f,HV) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 P(HV) 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t(3,1t)<br>t(c,T): 1-stage 0.0                                                                                        | 0.0                                                               | 0 0.                           | 70<br>00 0.                         | 00     | 0.00         | 0.00         | 0.00         | 0.00         |   |
| Movement 1 4 7 8 9 10 11 12 L T R L T R  t(f,base) 2.20 3.50 t(f,HV) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t(3,lt)<br>t(c,T): 1-stage 0.0<br>2-stage 0.0                                                                         | 0.00                                                              | 0 0.<br>0 0.<br>0 1.           | 70<br>00 0.<br>00 1.                | 00     | 0.00         | 0.00         | 0.00         | 0.00         |   |
| Movement 1 4 7 8 9 10 11 12 L T R L T R  t(f,base) 2.20 3.50 t(f,HV) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>t(3,lt) t(c,T): 1-stage 0.0 2-stage 0.0 t(c) 1-stage</pre>                                                       | 0.00                                                              | 0 0.<br>0 0.<br>0 1.           | 70<br>00 0.<br>00 1.                | 00     | 0.00         | 0.00         | 0.00         | 0.00         |   |
| t(f,base) 2.20 3.50<br>t(f,HV) 0.90 0.90 0.90 0.90 0.90 0.90 0.90<br>P(HV) 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t(3,1t) t(c,T): 1-stage 0.0 2-stage 0.1 t(c) 1-stage 2-stage                                                          | 0.00<br>0.00<br>0.00<br>4.2                                       | 0 0.0<br>0 0.0<br>0 1.0<br>6.0 | 70<br>00 0.<br>00 1.                | 00     | 0.00         | 0.00         | 0.00         | 0.00         |   |
| t(f,HV) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>t(3,lt) t(c,T): 1-stage 0.0</pre>                                                                                | 00 0.00<br>00 0.00<br>4.2                                         | 0 0.1<br>0 0.1<br>0 1.0<br>6.4 | 70<br>00 0.<br>00 1.<br>4           | 00 00  | 0.00         | 0.00         | 0.00         | 0.00         |   |
| P(HV) 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t(3,1t) t(c,T): 1-stage 0.0 2-stage 0.0 t(c) 1-stage 2-stage  Follow-Up Time Calcometer  Movement 1                   | 00 0.00<br>00 0.00<br>4.2                                         | 0 0.0<br>0 0.0<br>0 1.0<br>6.7 | 70<br>00 0.<br>00 1.<br>4           | 00     | 0.00         | 0.00         | 0.00         | 0.00         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>t(3,lt) t(c,T): 1-stage 0.0</pre>                                                                                | 00 0.00<br>00 0.00<br>4.2<br>ulations<br>4<br>L                   | 0 0.0<br>0 0.0<br>0 1.0<br>6.4 | 70<br>00 0.<br>00 1.<br>4           | 00     | 0.00         | 0.00         | 0.00<br>1.00 | 0.00<br>0.00 |   |
| t(f) 2.3 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t(3,1t) t(c,T): 1-stage 0.0 2-stage 0.0 t(c) 1-stage 2-stage  Follow-Up Time Calco Movement 1 t(f,base) t(f,HV) 0.9   | 00 0.00<br>00 0.00<br>4.2<br>ulations<br>4<br>L                   | 0 0.0<br>0 0.0<br>0 1.0<br>6.4 | 70<br>00 0.<br>00 1.<br>4           | 00000  | 0.00<br>0.00 | 0.00<br>1.00 | 0.00<br>1.00 | 0.00<br>0.00 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t(3,1t) t(c,T): 1-stage 0.0 2-stage 0.0 t(c) 1-stage 2-stage Follow-Up Time Calco Movement 1 L  t(f,base) t(f,HV) 0.0 | 00 0.00<br>00 0.00<br>4.2<br>ulations<br>4<br>L<br>2.20<br>90 0.9 | 7 L                            | 70<br>00 0.<br>00 1.<br>4<br>8<br>T | 00000  | 0.00<br>0.00 | 0.00<br>1.00 | 0.00<br>1.00 | 0.00<br>0.00 |   |

Worksheet 5-Effect of Upstream Signals

Computation 1-Queue Clearance Time at Upstream Signal

Movement 2

V(t) V(1,prot) V(t)

Movement 5 t) V(1,prot)



```
V prog
Total Saturation Flow Rate, s (vph)
Arrival Type
Effective Green, g (sec)
Cycle Length, C (sec)
Rp (from Exhibit 16-11)
Proportion vehicles arriving on green {\tt P}
g(q1)
g(q2)
g (q)
Computation 2-Proportion of TWSC Intersection Time blocked
                                               Movement 2
                                                                   Movement 5
                                            V(t) V(l,prot) V(t) V(l,prot)
alpha
beta
Travel time, t(a) (sec)
Smoothing Factor, F
Proportion of conflicting flow, f
Max platooned flow, V(c,max)
Min platooned flow, V(c,min)
Duration of blocked period, t(p)
Proportion time blocked, p
                                                  0.000
                                                                     0.000
Computation 3-Platoon Event Periods
                                           Result
                                           0.000
p(2)
p(5)
                                           0.000
p(dom)
p(subo)
Constrained or unconstrained?
Proportion
unblocked
                             (1)
                                               (2)
                                                                (3)
for minor
                        Single-stage
                                               Two-Stage Process
movements, p(x)
                          Process
                                           Stage I
                                                            Stage II
p(1)
p(4)
p(7)
p(8)
p(9)
p(10)
p(11)
p(12)
Computation 4 and 5
Single-Stage Process
Movement
                          1
                                  4
                                                               10
                                                                       11
                                                                              12
                                                                       Т
                                                                               R
V c,x
                                0
                                        1194
Рx
V c,u,x
Cr,x
C plat,x
Two-Stage Process
               Stage1 Stage2 Stage1 Stage2 Stage1 Stage2 Stage1 Stage2
V(c,x)
                        3000
P(x)
V(c,u,x)
\overline{C(r,x)}
C(plat,x)
Worksheet 6-Impedance and Capacity Equations
Step 1: RT from Minor St.
                                                       9
                                                                         12
```



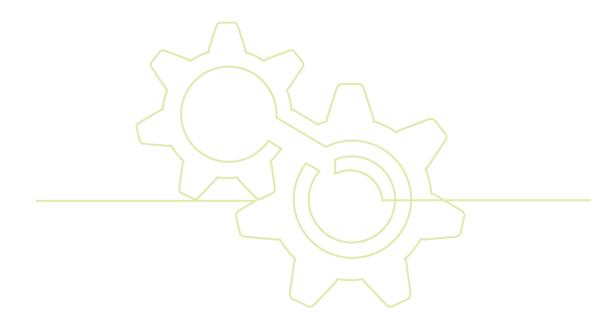
|                                                                    |              |              | enger |
|--------------------------------------------------------------------|--------------|--------------|-------|
| Conflicting Flows                                                  |              |              |       |
| Potential Capacity Pedestrian Impedance Factor                     | 1.00         | 1.00         |       |
| Movement Capacity                                                  | 1.00         | 1.00         |       |
| Probability of Queue free St.                                      | 1.00         | 1.00         |       |
| Step 2: LT from Major St.                                          | 4            | 1            |       |
| Conflicting Flows                                                  | 0            |              |       |
| Potential Capacity                                                 | 1597         |              |       |
| Pedestrian Impedance Factor                                        | 1.00         | 1.00         |       |
| Movement Capacity Probability of Queue free St.                    | 1597<br>0.99 | 1.00         |       |
| Maj L-Shared Prob Q free St.                                       | 0.99         | 1.00         |       |
| Step 3: TH from Minor St.                                          | 8            | 11           |       |
| Conflicting Flows                                                  |              |              |       |
| Potential Capacity                                                 |              |              |       |
| Pedestrian Impedance Factor                                        | 1.00         | 1.00         |       |
| Cap. Adj. factor due to Impeding mymnt                             | 0.99         | 0.99         |       |
| Movement Capacity Probability of Queue free St.                    | 1.00         | 1.00         |       |
|                                                                    | 1.00         |              |       |
| Step 4: LT from Minor St.                                          | 7            | 10           |       |
| Conflicting Flows                                                  | 1194         |              |       |
| Potential Capacity                                                 | 208          | 1.00         |       |
| Pedestrian Impedance Factor                                        | 1.00         | 1.00<br>0.99 |       |
| Maj. L, Min T Impedance factor Maj. L, Min T Adj. Imp Factor.      |              | 1.00         |       |
| Cap. Adj. factor due to Impeding mymnt                             | 0.99         | 1.00         |       |
| Movement Capacity                                                  | 207          |              |       |
| Step 3: TH from Minor St.  Part 1 - First Stage                    | 8            | 11           |       |
| Conflicting Flows Potential Capacity                               |              |              |       |
| Pedestrian Impedance Factor                                        |              |              |       |
| Cap. Adj. factor due to Impeding mvmnt                             |              |              |       |
| Movement Capacity<br>Probability of Queue free St.                 |              |              |       |
| Part 2 - Second Stage<br>Conflicting Flows                         |              |              |       |
| Potential Capacity                                                 |              |              |       |
| Pedestrian Impedance Factor                                        |              |              |       |
| Cap. Adj. factor due to Impeding mvmnt<br>Movement Capacity        |              |              |       |
| Part 3 - Single Stage                                              |              |              |       |
| Conflicting Flows Potential Capacity                               |              |              |       |
| Pedestrian Impedance Factor                                        | 1.00         | 1.00         |       |
| Cap. Adj. factor due to Impeding mymnt<br>Movement Capacity        | 0.99         | 0.99         |       |
| Result for 2 stage process:                                        |              | <del></del>  |       |
| a                                                                  |              |              |       |
| y<br>C t                                                           |              |              |       |
| Probability of Queue free St.                                      | 1.00         | 1.00         |       |
| Step 4: LT from Minor St.                                          | 7            | 10           |       |
| Part 1 - First Stage                                               |              | <del></del>  | ++    |
| Conflicting Flows                                                  | (            |              | / /   |
| Potential Capacity                                                 | \            |              |       |
| Pedestrian Impedance Factor Cap. Adj. factor due to Impeding mvmnt |              |              | / /   |
| Movement Capacity                                                  |              |              |       |
| - 4                                                                |              | I            | - 1   |

Part 2 - Second Stage Conflicting Flows



Potential Capacity
Pedestrian Impedance Factor
Cap. Adj. factor due to Impeding mvmnt
Movement Capacity

| Part 3 - Single Stage                |       |         |        |          |       |    |
|--------------------------------------|-------|---------|--------|----------|-------|----|
| Conflicting Flows                    |       | 1       | 194    |          |       |    |
| Potential Capacity                   |       | 2       | 08     |          |       |    |
| Pedestrian Impedance Factor          |       |         | .00    |          | 1.00  |    |
| Maj. L, Min T Impedance factor       |       |         |        |          | 0.99  |    |
| Maj. L, Min T Adj. Imp Factor.       |       |         |        |          | 1.00  |    |
| Cap. Adj. factor due to Impeding mvm | nn+   | 0       | .99    |          | 1.00  |    |
| Movement Capacity                    | III C |         | 07     |          | 1.00  |    |
| riovement capacity                   |       | _       | 0 /    |          |       |    |
| Results for Two-stage process:       |       |         |        |          |       |    |
| a                                    |       |         |        |          |       |    |
| У                                    |       |         |        |          |       |    |
| C t                                  |       | 2       | 07     |          |       |    |
|                                      |       | _       | 0 /    |          |       |    |
|                                      |       |         |        |          |       |    |
| Worksheet 8-Shared Lane Calculations | 3     |         |        |          |       |    |
| Movement                             | 7     | 8       | 9      | 10       | 11    | 12 |
| 110 V O.M.O.T.O                      | L     | Т       | R      | L        | Т     | R  |
|                                      | _     | -       |        | _        | -     |    |
| Volume (vph)                         | 6     |         |        |          |       |    |
| Movement Capacity (vph)              | 207   |         |        |          |       |    |
| Shared Lane Capacity (vph)           |       |         |        |          |       |    |
| Sharea Pane Sapasis, (vpn)           |       |         |        |          |       |    |
|                                      | 1     | 1 14'   | ~      |          | 1     |    |
| Worksheet 9-Computation of Effect of | Flare | a Minor | Street | t Approa | acnes |    |
| Movement                             | 7     | 8       | 9      | 10       | 11    | 12 |
|                                      | L     | T       | R      | L        | T     | R  |
|                                      |       |         |        |          |       |    |
| C sep                                | 207   |         |        |          |       |    |
| Volume                               | 6     |         |        |          |       |    |
| Delay                                |       |         |        |          |       |    |
| Q sep                                |       |         |        |          |       |    |
| Q sep +1                             |       |         |        |          |       |    |
| round (Qsep +1)                      |       |         |        |          |       |    |
| Tound (Qsep 11)                      |       |         |        |          |       |    |
| n max                                |       |         |        |          |       |    |
| C sh                                 |       |         |        |          |       |    |
| SUM C sep                            |       |         |        |          |       |    |
| n                                    |       |         |        |          |       |    |
| C act                                |       |         |        |          |       |    |
|                                      |       |         |        |          |       |    |
|                                      |       |         |        |          |       |    |


## Worksheet 10-Delay, Queue Length, and Level of Service

| Movement         | 1 | 4    | 7    | 8    | 9 | 10            | 11    | 12 |
|------------------|---|------|------|------|---|---------------|-------|----|
| Lane Config      |   | LT   | L    |      |   |               |       |    |
| v (vph)          |   | 10   | 6    |      |   | $\overline{}$ |       |    |
| C(m) (vph)       |   | 1597 | 207  |      | / | \             |       |    |
| v/c              |   | 0.01 | 0.03 |      |   |               |       |    |
| 95% queue length |   | 0.02 | 0.09 |      |   |               |       |    |
| Control Delay    |   | 7.3  | 22.9 |      |   |               |       |    |
| LOS              |   | A    | С    |      |   |               | \ /   |    |
| Approach Delay   |   |      |      | 22.9 | / |               | - 1 1 | /  |
| Approach LOS     |   |      |      | С    |   |               |       |    |

Worksheet 11-Shared Major LT Impedance and Delay

|                                               | Movement 2 | Movement 5 |
|-----------------------------------------------|------------|------------|
|                                               |            |            |
| p(oj)                                         | 1.00       | 0.99       |
| v(il), Volume for stream 2 or 5               |            | 0          |
| v(i2), Volume for stream 3 or 6               |            | 0          |
| s(il), Saturation flow rate for stream 2 or 5 | \          | 1700       |
| s(i2), Saturation flow rate for stream 3 or 6 |            | 1700       |
| P*(oj)                                        |            | 0.99       |
| d(M,LT), Delay for stream 1 or 4              |            | 7.3        |
| N, Number of major street through lanes       |            | 2          |
| d(rank,1) Delay for stream 2 or 5             |            |            |
|                                               |            |            |
|                                               |            |            |



